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The task of identifying protein-ligand interactions (PLIs) plays a prominent role in the field of drug dis-
covery. However, it is infeasible to identify potential PLIs via costly and laborious in vitro experiments.
There is a need to develop PLI computational prediction approaches to speed up the drug discovery pro-
cess. In this review, we summarize a brief introduction to various computation-based PLIs. We discuss
these approaches, in particular, machine learning-based methods, with illustrations of different
emphases based on mainstream trends. Moreover, we analyzed three research dynamics that can be fur-
ther explored in future studies.
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1. Introduction

Drug discovery is a time-consuming and labor-intensive pro-
cess that includes the selection, design, and optimization of mole-
cules based on disease-specific target proteins [1]. The task of
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(L. Cheng).
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predicting the interactions between compounds and proteins is
the core and foundation of drug discovery, which consists of
drug-target interaction (DTI) [2], drug-target binding affinity
(DTA) 3], drug-target interaction sites and drug bioactivity on pro-
teins [4,5]. Protein-ligand interaction (PLI), also known as
compound-protein interaction (CPI), is most reliably determined
by in vitro experiments or biochips; however, this is extremely
costly in the first screening of a compound, which requires a pro-
hibitively enormous search space [6,7]. To narrow the search space,
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Fig. 1. Workflow of ML methods used in PLI prediction, including (a) benchmark
data collection and preprocessing; (b) framework building and model training; and
(c) model evaluation.

there is an urgent need to develop more efficient computational
approaches.

The increasing publication of large-scale PLI datasets enables
the development of traditional machine learning (ML) and deep
learning (DL) methods for the prediction of PLIs. The workflow
for predicting PLIs using ML methods is shown in Fig. 1. First, the
compound-protein pairs and corresponding labels are retrieved
from PLI databases and other related databases. In each com-
pound-protein pair, the compound and protein are represented
by the feature vectors/matrix from different types of properties
(i.e., biological, topological and physicochemical information).
Next, the generated feature vectors/matrix and corresponding
labels are fed into the ML-based methods for training. After the
training stage, the trained model can be tested by different evalu-
ation mechanisms.

2. Research status of PLI prediction

The traditional determination of PLIs using humidity tests
involves in vitro experiments, biochips, and other classic methods.
Due to exorbitant costs, a computational PLI prediction study field
has emerged. Researchers have put much effort into this field and
have produced excellent results. Currently, there are four types of
computation-based PLI methods: ligand-based methods [8], struc-
tural methods [9], network-based methods [10] and feature based
methods [11].

2.1. Ligand based methods

Ligand based methods have been developed to predict potential
PLIs under the hypothesis that ligands with chemical similarity
also have similar biological activities and they tend to bind to sim-
ilar protein targets [12]. Therefore, these methods compare candi-
date molecules with known protein ligands and predict the
interactions based on the similarities between them. These meth-
ods do not rely on any knowledge about the target protein, but
meanwhile performs poorly for targets with an insufficient num-
ber of known ligands.

2.2. Structural methods

Structural methods use the three-dimensional structure of pro-
teins and ligands and molecular docking to simulate the interac-
tion between proteins and ligands and finally utilize the scoring
function to evaluate the conformation [13,14]. Structural methods
can be divided into three categories by the type of scoring func-
tion: the classic scoring function method [15], machine learning
scoring function method [16,17] and deep learning scoring func-
tion method [18,19]. The core of structural methods is to accu-
rately model the three-dimensional structure of proteins and
compounds. Although structural methods can obtain better predic-
tion performance, they often take a certain amount of computing
time. In addition, they fail to predict interactions with unknown
structures of proteins or compounds. Therefore, it is difficult to

2832

Computational and Structural Biotechnology Journal 20 (2022) 2831-2838

screen compound-protein pairs on a large scale, which seriously
limits the application scope of this kind of approach.

2.3. Network based methods

Network based methods predict the PLI based on various bio-
logical networks and graph theory. A number of computational
methods model the relationship between compounds and proteins
as a bipartite network [20]. Moreover, PLI-related biological net-
works, such as protein-protein interactions, drug-drug interac-
tions and drug-disease interactions, have been integrated into a
heterogeneous network [9]. The potential interaction information
is learned from heterogeneous data from diverse sources to boost
the accuracy of DTI prediction tasks [21-23]. However, those pre-
diction approaches are shallow-learning methods that cannot fully
extract deep and complex associations between compounds and
proteins.

2.4. Feature based methods

Feature based methods are widely used in drug-target interac-
tion prediction studies [24]|. These methods predict PLI in a
machine learning framework. Feature vectors of drug-target pairs
are obtained from their properties or by learning from raw data,
and then fed into various classifiers or regressors [25]. Researchers
have conducted a plenty of research from many perspectives and
their studies are introduced in detail in the following sections. In
addition, since both ligand-based and target-based aspects are con-
sidered in feature based methods, they can be assigned to the so-
called “chemogenomics” approaches [26].

3. Machine learning in PLI prediction

Existing models typically employ the simplified molecular-
input line entry system (SMILES) [27,28], molecular structure
[29], protein sequences [30], secondary structure of protein [31],
gene ontology [32], and other descriptors of predefined molecules
and proteins as input features. Then, these inputs were trained by a
variety of network frameworks, such as convolutional neural net-
works (CNNs) [33], recurrent neural networks (RNNs) [34], graph
neural networks (GNNs) [35], and Transformer network structures
and their variants, to realize the prediction of PLI-related tasks,
such as DTI, DTA, and activity [36]. Fig. 1 illustrates a flowchart
describing the three generic steps used by these computational
approaches for predicting PLIs. Table 1 and Table 2 summarize
the typical methods to predict PLIs based on ML in recent years
in terms of the input protein/compound features, protein/com-
pound feature extractors, final computational methods, and web-
site. Studies regard the DTI prediction task as a binary
classification problem corresponding to the articles in Table 1.
These methods, which yield 1 if the DTI is active and 0 otherwise,
are concerned about the existence of a DTI. However, other
researchers doubt that using classification methods to address
the DTI prediction problem loses valuable information about the
strength of the interaction between proteins and ligands. The stud-
ies in Table 2 considered the PLI problem as a regression task to
predict the binding affinity score. It can also be seen in Table 2 that
methods [37-39] solve both tasks. The binding affinity, which can
be determined by experimental methods, is defined as the strength
of the binding interaction between a protein and a ligand.

From Tables 1 and 2, it can be seen that the traditional ML
methods are gradually being phased out and replaced by DL tech-
nologies, particularly the utilization of diverse neural networks and
learning mechanisms. In the following section, we summarized
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Table 1
PLI prediction methods as classification tasks based on the ML framework in recent years®.
Tool" Date Input protein features Input compound features Protein feature = Compound Methods
extractor feature
extractor
DeepDTIs [69] 03/2017 Protein sequence composition Extended - - DBN
descriptors connectivity fingerprints
DDR [70] 01/2018 Similarity measures Similarity measures - - RF
CPI-GNN [19] 07/2018 N-gram amino acids Molecular graphs CNN GNN Softmax
classifier
DeepConv-DTI [18]  06/2019 Local residue patterns PubChem fingerprints Convolution and  Fully connected  Fully connected
global max- layer layer
pooling layers
DTI-CDF [71] 12/2019 Similarity-based features Similarity-based features - - Cascade deep
forest
DEEPScreen [72] 01/2020 - 2-D compound images - Convolutional Fully connected
and pooling layers
layers
TransformerCPI 05/2020 Amino acid sequence CNN Graph structure ~ GCNs Transformer
[54] with self-
attention
mechanism
DTI-CNN [73] 08/2020 Similarity matrix Similarity matrix Random walk Random walk Fully connected
with restart with restart layer
MolTrans [52] 10/2020 Substructure Substructure Transformer Transformer Linear layer
embedding embedding encoder encoder
BridgeDPI [35] 02/2021 K-mer/sequence features Fingerprint/sequence Perceptron Perceptron GNN and a full
features layers layers connected layer
CSConv2d [74] 04/2021 - 2-D structural - A channel and Fully connected
representations spatial attention layer
mechanism
GADTI [75] 04/2021 Similarity data Similarity data Heterogeneous Heterogeneous Graph
network network autoencoder
LGDTI [76] 04/2021 K-mer Molecular fingerprint Graph Graph RF
convolutional convolutional
network and network and
DeepWalk DeepWalk
PretrainDPI [77] 05/2021 Pretrained models Molecular graph CNN GraphNet Fully connected
layers
X-DPI [51] 06/2021 Structure and sequence features Atomic features TAPE Mol2vec Transformer
embedding embedding decoder
MultiDTI [78] 07/2021 N-gram embedding N-gram embedding Deep Deep Multilayer
downsampling downsampling perceptron
residual module  residual module
HyperAttentionDTI ~ 10/2021 Amino acid sequences SMILES strings CNN and CNN and Fully connected
[79] attention attention layer
mechanism mechanism
DTIHNC [80] 02/2022 Protein-protein interactions, protein- Drug-drug interactions, drug- Denoising Denoising CNN module
disease associations disease associations, drug- autoencoder autoencoder
side-effects associations
HIDTI [81] 03/2022 Protein sequences, protein-protein SMILES strings, drug-drug A residual block A residual block  Fully connected
similarities, protein-protein interactions, drug-side effect layers
interactions, protein-disease associations, drug-
interactions disease associations
HGDTI [82] 04/2022 Node features encoding (interactions, Node features encoding BiLSTM BiLSTM Fully connected
similarities, associations) (interactions, similarities, layers
associations)
Note: “-” in the table indicates that there is no such information in the corresponding article.

¢ Abbreviations: DBN - deep belief network; RF - random forest; CNN - convolutional neural network; GNN - graph neural network; GCNs - graph convolutional
networks; TAPE - tasks assessing protein embeddings; SMILES - simplified molecular-input line-entry system; BiLSTM - bidirectional long short-term memory;
b URL addresses for the listed tools: DeepDTIs - https://github.com/Bjoux2/DeepDTIs; DDR - https://bitbucket.org/RS024/ddr; CPI-GNN - https://github.com/masashit-

subaki; DeepConv-DTI - https://github.com/GIST-CSBL/DeepConv-DTI; DTI-CDF - https://github.com//a96123155/DTI-CDF; DEEPscreen - https://github.com/cansyl/

DEEPscreen; transformerCPl - https://github.com/lifanchen-simm/transformerCPI; DTI-CNN - https:

ithub.com/MedicineBiology-Al/DTI-CNN; MolTrans - https://

github.com/kexinhuang12345/moltrans; BridgeDPI - https://github.com/DeepAAl/BridgeDPI; CSConv2d - https://doi.org/10.4121/uuid:547e8014-d662-4852-9840-c1e-

f065d03ef; GADTI - https://github.com/shulijiuba/GADTI; PretrainDPI - https://github.com/OHwan/PretrainDPI; MultiDTI - https://github.com/Deshan-Zhou/MultiDTI;

HyperAttentionDTI - https://github.com/zhaoqichang/HpyerAttentionDTI; DTIHNC - https://github.com/ningq669/DTIHNC; HIDTI - https://github.com/DMCB-GIST/HIDTI;

HGDTI - https://bioinfo.jcu.edu.cn/hgdti.

several research trends of the machine learning based PLI predic-
tion from the relevant literature in recent decades.

Input protein and compound features Many previous studies
have applied manually operated descriptors such as similarity
and molecular fingerprints, as well as other composition informa-
tion, to drive PLI predictions [40-43]. Sequence descriptors, which
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include SMILES strings and amino acid sequences, are commonly
used by encoding sequences in numerical matrices via one-hot or
word embedding (such as Prot2Vec and Mol2Vec) [38,44,45]. The
sequence representation only considers the primary structure
information and limits the learning capability. To more effectively
represent compounds and proteins, graph-based features have also
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Table 2
PLI prediction methods as regression tasks based on the ML framework in recent years®.

Tool" Date Input protein features Input compound features Protein feature extractor Compound feature extractor Methods
SimBoost [26] 04/ Target similarity Drug similarity - - Gradient boosting tree model
2017
ACNN [83] 2017  Atomic coordinates Atomic coordinates Atomic convolution layer Atomic convolution layer Atomic fully connected layer
DeepDTA [84] 09/ Label encoding Label encoding CNN blocks CNN blocks Fully connected layer
2018
DeepAffinity [46] 02/ Structural property sequence Structural property sequence  Seq2seq autoencoders Seq2seq autoencoders Unified RNN-CNN
2019 representation representation
WideDTA [85] 02/ Textual information Textual information CNN blocks CNN blocks Fully connected layers
2019
GraphDTA [86] 06/ One-hot encoding Molecular graph Convolutional layers 4 graph neural network variants Fully connected layers
2019
RFScore [17] 08/ 36 intermolecular features 36 intermolecular features - - Random forest
2019
AttentionDTA [36] 11/ Label encoding Label encoding CNN block CNN block Attention block- fully connected
2019 layers
Taba [87] 01/ The average distance between  The average distance between - - Machine-learning model
2020 pairs of atoms pairs of atoms
GAT_GCN [88] 04/ Peptide frequency Graph structure CNN GCN Fully connected layers
2020
SAnDReS [89] 05/ Docking scores Docking scores - - Machine-learning model
2020
DeepCDA [90] 05/ N-gram embedding SMILES sequence CNN-LSTM-Two-sided attention CNN-LSTM-Two-sided attention Fully connected layers
2020 mechanism mechanism
DGraphDTA [91] 06/ Protein graph Molecular graph GNN GNN Fully connected layers
2020
JoVA [92] 08/ Multiple unimodal Multiple unimodal Joint view attention module Joint view attention module Prediction model
2020 representations representations
Fusion [93] 11/ Atomic representation Atomic representation CNNs SG-GCNs Fully connected layers
2020
DeepGS [44] 2020 Symbolic sequences Molecular structure Prot2Vec-CNN-BiGRU blocks Smi2Vec-CNN-BiGRU blocks Fully connected layer
DeepDTAF [94] 01/ Sequence, structural property SMILES string Dilated/traditional convolution layers Dilated convolution layers Fully connected layers
2021 information
GanDTI [37] 03/ Protein sequences Molecule fingerprints- Attention module Residual graph neural network MLP
(classification and 2021 adjacency matrix
regression)
Multi-PLI [38] 04/ One-hot vectors One-hot vectors CNN blocks CNN blocks Fully connected layers
(classification and 2021
regression)
ML-DTI [95] 04/ Protein sequences SMILES string CNN block (mutual learning) CNN block (mutual learning) Linear transformation layers
2021
DEELIG [47] 06/ Atomic level-structural Physical properties- CNN Fully connected layers Fully connected layers
2021 information-sequences fingerprints
GEFA [55] 07/ Sequence embedding features  Graph representation GCN GCN Linear layers
2021
SAG-DTA [96] 08/ Label encoding Molecular graph CNN Graph convolutional layer-SAGPooling Fully connected layers
2021 layer
Tanoori et al. [97] 08/ SW sequence similarity CS similarity - - GBM
2021
EmbedDTI [56] 11/ Amino acids Structural information CNN Attention-GCNs Fully connected layers
2021
DeepPLA [45] 12/ Protein sequences (ProSE) SMILES strings (Mol2Vec) Head CNN modules-ResNet-based CNN Head CNN modules-ResNet-based CNN BiLSTM module-MLP module
2021 module module
DeepGLSTM [98] 01/ Amino acids Adjacency representation BiLSTM GCN Fully connected layers
2022
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Table 2 (continued)

Methods
MLP

Compound feature extractor

Protein feature extractor
GNN

Input compound features

Input protein features

Date
01/

Tool"

Multiscale convolutional neural network

Graph structure

Integers

MGraphDTA [99]

2022
01/

BiLSTM Multi-

SMILES strings BiLSTM

word embeddings

FusionDTA [100]

head linear attention blocks/Fully

connected layer

2022

Fully connected layers

Transformer blocks

Transformer blocks

Morgan/circular fingerprints

Protein sequences

02/

HoTS [39]

2022

(classification and

regression)
ELECTRA-DTA [101]

Fully connected layers

Squeeze-and-excitation convolutional

neural network blocks

Squeeze-and-excitation convolutional

neural network blocks

SMILES string

Protein sequences

03/

2022

in the table indicates that there is no such information in the corresponding article.
2 Abbreviations: CNN - convolutional neural network; GNN - graph neural network; GCNs - graph convolutional networks; LSTM - long short-term memory; SG-CNNs - spatial graph neural networks; BiGRU - bidirectional

gate recurrent unit; MLP — multilayer perceptron; GCN - graph convolutional network; SW - Smith-Waterman; CS - chemical structure; GBM - gradient boosting machine; BiLSTM - bidirectional long short-term memory;

“won

Note:

b URL addresses for the listed tools: SimBoost - https://zenodo.org/record/164436; ACNN - https:

Taba - https://github.com/azevedolab/taba; SAnDReS - https://github.com/azevedolab/sandres; DeepCDA - https:

ithub.com/jacklin18/DeepGS

ithub.com/thinng/GraphDTA;

Lab/DeepAffinity; GraphDTA -

; DeepDTAF - https:

https://github.com/lInl/fast; DeepGS - https:

GEFA - https://github.com/ngminhtri0394/GEFA; EmbedDTI - https://github.com/Aurorayuan/

EmbedDTI; DeepPLA - https://github.com/David-BominWei/DeepPLA; DeepGLSTM - https://github.com/MLIab4CS/DeepGLSTM.git; MGraphDTA - https://github.com/guaguabujianle/MGraphDTA; FusionDTA - https://github.-

com/yuanweining/FusionDTA; HoTS - https:// github. com/ GIST- CSBL/ HoTS; ELECTRA-DTA - https://github.com/IILab-Resource/ELECTRA-DTA.

github.com/asadahmedtech/DEELIG;

DEELIG - https:

.git;
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been widely employed. In the graph representing PLIs, the protein
is modeled as a graph structure where nodes are residues and the
edge information is provided by the contact map [46]. Researchers
are also working on leveraging 3D structural information. For
instance, a complex is cropped into a cubic box [47]. With advance-
ments in protein structure prediction and the intuitiveness of 3D
information, structural information will have significant research
value in predicting PLIs and will be a promising study topic in
the future.

Protein and compound feature extractors Some works adopted
the same structure to handle the representation of proteins and
compounds, while others created separate feature extractors for
the two inputs [48]. These extractors include CNN-based models,
RNN-based models, attention mechanism-based models, and
GNN-based models. CNN has the benefit of being able to catch cru-
cial local patterns in the whole space. However, there are certain
drawbacks. Protein residues that are not adjacent can be quite
close in structure. CNN has failed to obtain this long-distance
dependence. RNN-based modules, such as the long short-term
memory (LSTM) network, are suitable for learning long-term
dependency from compound and protein sequence inputs, com-
pensating for the CNN disadvantage [49]. However, due to the dif-
ficulty of encoding long-range dependencies, the training of RNN
becomes problematic when the sequence is long. Furthermore, to
overcome the difficulty in the interpretation of black-box-like neu-
ral networks, researchers have solved this problem with attention
mechanism-based models. The attention mechanism can be effec-
tively visualized by mapping regions with high weight to the
known 3D protein—-compound complex structures, thus indicating
the biological significance of the model [50]. However, its opera-
tion, as in the case of Transformer with attention mechanism,
requires a large amount of computer memory. However, Trans-
former has released a series of new and updated versions that offer
broad prospects for predicting PLI tasks [51,52]. The GNN is a kind
of neural network dedicated to extracting graph structure informa-
tion [53]. GNN-based models, such as the graph convolutional neu-
ral network (GCN) and Graph Isomorphism Network (GIN), Graph
Attention Networks (GAT), are commonly applied in computer-
aided drug design [54-57].

4. Challenges of machine learning in PLIs

ML methods have attracted increasing attention in the fields of
bioinformatics and chemical informatics [58,59]. However, the
complexity of proteins, compounds and their interactions make
ML-based PLI prediction challenging for the following reasons:

(i) In the field of ML, feature engineering is used in traditional
ML frameworks to select related features for downstream
tasks [60]. DL methods try to avoid complicated feature
engineering and learn abstract representation automatically
[61]. Since the rise of large-scale data and improvements in
computing power, DL techniques have enabled unprece-
dented breakthroughs in many areas, including image pro-
cessing, natural language processing and bioinformatics
[62]. PLIs involve complex physical, chemical, and biological
processes. The combination of compounds and proteins is
the consequence of various processes that are highly con-
centrated. Therefore, proteins and molecules are far more
sophisticated than images, language, and other items.

PLI prediction is mainly modeled as a supervised classifica-
tion or regression problem in the ML-based method [63].
Supervised learning requires large-scale high-quality labeled
datasets. In the case of an insufficient quantity of labeled PLI
datasets, research works apply unsupervised learning, semi-

(i
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supervised learning, or self-supervised learning to predict
the PLIs [64-66]. In particular, unsupervised pretrained
models on large text corpora have shown remarkable perfor-
mance on various natural language processing tasks. Conse-
quently, some unsupervised pretrained models for
embedding the amino acid sequence and SMILES have been
proposed in recent years [67]. Unfortunately, due to the rel-
atively immature understanding of the interaction mecha-
nism between proteins and compounds, there remains a
lack of specific unsupervised DL models for the PLI task.
(iii) In addition to unlabeled data, existing ML methods also do
not take full advantage of knowledge about proteins and
compounds. The related knowledge can be expressed in var-
ious forms. Protein-related knowledge includes primary
structure, secondary structure, tertiary structure, functional
annotation, motif, and various physical and chemical attri-
butes. Compound-related knowledge includes molecular
structure, functional groups and molecular properties.
Which type of knowledge is connected to PLIs and how to
select, represent, and incorporate knowledge into data-
driven ML models are progressive theoretical questions.

5. Discussion and analysis

The increase in high-quality and large-scale PLI datasets has
enabled the development of traditional ML or DL methods for the
prediction of PLIs. Compared with traditional ML methods, DL
methods have shown significant advantages, such as feature gener-
ation automation and the ability to capture complex nonlinear
relationships. It is also worth noting that there is still much room
for improvement in prediction accuracy, robustness, generaliza-
tion, and interpretability.

First, the performance of existing DL methods for PLIs is still
poor due to the complexity of the PLI problem itself and the limited
data available. Several DL-based models also fail to make good use
of large-scale unlabeled data. In addition, the selection of input
representation is a vital part of PLI prediction [68]. Most of the
existing DL methods train deep neural networks directly on low-
level representations, such as amino acid sequences and SMILESs.
The primary structure input may affect the model generalizability
in predicting the novel PLL Researchers should pay more attention
to improving the generalizability of models in future studies. Fur-
thermore, the lack of interpretability of DL-based methods limits
their practical applications, as the potential factors influencing
the prediction results are unknown. Some methods use attention
mechanisms to capture interaction sites, but they are still unable
to explain the mechanisms behind the PLI. Researchers should
attempt to design an interpretable DL model to predict PLIs.
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